
1. Introduction

The quantum Hall effect was discovered by von
Klitzing, Dorda, and Pepper in 1980 [1]. They reported
that measurements of the Hall resistance RH on Si
MOSFETS showed a step-like structure at high mag-
netic fields. The plateaus of these steps were found to
be quantized to values very close to h/ie2, where h is the
Planck constant, e is the electron charge, and i is an
integer. Von Klitzing et al. recognized immediately the
implications of this result for resistance metrology.
Soon after the discovery of the quantum Hall effect
in Si MOSFETS, it was observed in other devices con-
taining two-dimensional electron gases (2DEGs), such
as GaAs/AlGaAs heterostructures [2], and InGaAs/InP
devices [3].

While the quantization was shown to be independent
of the material properties of the sample [4-6], and the
precision of quantum Hall measurements continually
improved, it was found that finite temperature and
current could both lead to deviations from the zero
temperature value of the Hall resistance. Several inves-
tigations [3,7-18] measured the temperature depend-
ence of the Hall resistance across the device, and the

longitudinal resistance Rx along the device, over the fol-
lowing years. However, few experiments could achieve
a precision greater than 10–7 h/e2, including metrology
laboratories.

It is clear that since any measurement must neces-
sarily be made at finite temperature, understanding the
temperature dependence of the quantum Hall resistance
is critical if we wish to establish a resistance standard
based on this value. In practice, one can typically cool
the sample to temperatures where no temperature
dependence is measurable to the precision of the meas-
urement. However, in order to establish whether or not
the temperature is “cold enough” requires an under-
standing of the physical origin of the temperature
dependence. Only then can we be confident that we are
approaching the zero-temperature limit.

In this article, we present the results of a set of
experiments investigating the temperature dependence
of the device, known as GaAs(7), in the integer
quantum Hall regime. GaAs(7) is one of the
GaAs/AlGaAs heterostructures used at the National
Institute of Standards and Technology (NIST) to main-
tain the unit of resistance for the United States of
America.
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Although remarkable progress has been made
[19-22], a complete theory of the quantum Hall effect is
still missing. Nonetheless, there have been serious
attempts to explain the physics behind many of the key
features of the quantum Hall effect. Plausible explana-
tions for the temperature dependence of the Hall and
longitudinal resistances have been proposed for differ-
ent temperature regimes. In particular, at high tempera-
tures (typically several kelvin) thermal activation
across an energy gap generally explains the experimen-
tal data satisfactorily. At lower temperatures, where
thermal activation is “frozen out,” a form of variable
range hopping devised by Efros and Shklovskii [23, 24]
is often used to explain the data. However, early results
on GaAs(7) and other devices by Cage et al. [13] did
not fit either of these models.

There have been a multitude of experiments per-
formed on the quantum Hall effect; in particular, a
number of experiments measuring temperature depen-
dences of transport properties [3,7-18]. However,
whether due to the nature of the devices, limitations of
the measurement systems, or because the experiment
was examining some other aspect of the quantum Hall
effect, a limited number of results have been reported
which have a direct bearing on the regime of interest
for resistance metrology [13,17,18].

The experiments described in this article were car-
ried out with the primary goal of exploring the temper-
ature dependence of the quantum Hall resistance on a
standards-quality device. Essentially two kinds of
experiments were performed. In the first method the
Hall and longitudinal voltages were read directly with
8 1/2 digit digital voltmeters (DVMs) while the mag-
netic field was swept from 0 T to 13.3 T at constant
current and constant temperature. This method is the
most efficient and flexible way of accumulating data,
but the accuracy is limited to about 10–5 h/e2.
Measurements were made using this method over the
temperature range 1.4 K to 34 K. The second method
made use of specialized systems to measure either the
Hall resistance or the longitudinal resistance at fixed
magnetic field, and at constant current and temperature.
These measurement systems can be used only close to
the Hall plateau centers, where the Hall resistance RH

approaches its nominal value, and the longitudinal
resistance Rx approaches zero. The uncertainties for this
method were typically about 10–8 h/e2 for the Hall
resistance, and 10–9 h/e2 for the longitudinal resistance.
Measurements at i = 4 were made between 1.4 K and
4.2 K using this second method, and measurements at
i = 2 were made between 1.4 K and 7.0 K.

2. Measurement System

The quantum Hall measurements were made on
a single GaAs/AlGaAs heterostructure which we
refer to from here on as “GaAs(7).” GaAs(7) is a  GaAs/
AlxGa1–xAs (x = 0.31) device produced at Bell Labo-
ratories in the early 1980s by molecular beam
epitaxy. The total length of the device is about 5.5 mm.
The width of the Hall bar is 0.4 mm, and the separation
between neighboring Hall probes is 1.0 mm. A schemat-
ic diagram of the device is shown in the inset of Fig. 1.
It has an electron number density ns = 5.2 × 1015 m–2,
and a zero-field mobility µs = 11.1 m2/Vs.

The device was mounted on a sample holder within a
variable temperature insert (VTI) at the center of a super-
conducting magnet, with a maximum applied magnetic
flux density of 16 T. The device was immersed in liquid
4He at a temperature of 4.2 K, cooled to 1.4 K by vacu-
um pumping, and raised above 4.2 K by using a heater
and temperature controller. Two calibrated Cernox1

thermometers were located close to the sample. One, just
below the sample, was mounted on the VTI. The second,
just above the sample, was mounted on the sample
probe. Having two thermometers bracketing the sample
improved temperature control, since it allowed for an
estimate of thermal gradients in the neighborhood of
the device. The estimated uncertainty in the tempera-
ture due to temperature control, thermal gradients, and
uncertainties in the thermometer calibrations, was
about 10 mK below 4.2 K. At higher temperatures the
uncertainty increased because the temperature became
harder to control, and thermal gradients increased.

In order to improve the signal-to-noise ratio, and
because the signals were frequently very small, all elec-
trical components of the experiment were double-
shielded. For components such as switch boxes or
patch panels, this involved using two nested layers of
electrically insulated aluminum boxes to enclose all
electrical connections. All leakage resistances were
checked to be at least 1013 Ω.

There were two distinct methods for making voltage
measurements on the device. The simplest, which for
many purposes was sufficient, was to measure the volt-
age across the device directly with one or more digital
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voltmeters (DVMs). The device was connected in
series with a temperature-controlled, wire-wound
resistor, with a value trimmed to within about 1 × 10–6

of the Hall resistance RH at i = 4 (i.e., 6 453.201 75 Ω).
The drift in this resistor has been documented at about
5 × 10–8 RH/year [25]. The voltage across the resistor
was measured to determine the current I flowing
through the device. RH = VH /I and Rx = Vx/I, where VH

and Vx are the voltages measured across the device, and
along the device, respectively. The magnet current was
used to determine the magnetic field at the device.

The second method was used whenever greater
precision was required at the centers of Hall plateaus
or Rx minima. First, in order to reduce the random un-
certainty due to noise, measurements were made at con-
stant magnetic field, current and temperature, and con-
tinuously averaged until the desired uncertainty level
was reached. Second, a system of switching was
included in the measurement to reduce the effect of

certain systematic effects, such as thermal EMFs,
current drift, asymmetrical leakage resistances, etc.
A specialized custom-built measurement system
POTSYS was used (Ref. [26]), with low noise current
sources made from mercury batteries, a nanovoltmeter
to amplify small signals, and mechanical rotary switch-
es. Power to the switches was turned off during
measurements to reduce electrical noise. The experi-
mental setup and procedure is described in more detail
in Ref. [27].

A typical magnetic field sweep is shown in Fig. 1.
The Hall (VH) and longitudinal (Vx) voltages were
measured at a constant current of 25 µA, as the magnet-
ic field was swept up from 0 T to 16 T. The tempera-
ture, which was the base temperature of the VTI, was
1.4 K. The entire field sweep took about 1 hour to com-
plete.

Except for the i = 3 plateau, no other odd integer
plateaus are visible at this temperature. To highlight the 
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Fig. 1. Hall (RH) and longitudinal (Rx) resistances of GaAs(7) in units of h/e2 as a function of magnetic flux den-
sity B. Representative plateau numbers are labeled. The top left inset shows a schematic of the device with the
probe sets labeled. RH was measured across P3-P4. Rx was measured across P2-P6. The dc bias current is con-
nected across IS-ID. The region enclosed by the dashed line is shown magnified in Fig. 2(a).



detail observable in a single sweep, successively
magnified views are shown in Fig. 2. Figures 2(c) and
2(d) were obtained under the same conditions, but at a
significantly slower sweep rate, to ensure smooth
curves. Notice that indentations in the Rx curve can be
identified with filling factors of over i = 90.

3. Temperature Dependence of Rx

Three magnetic field sweeps of Rx at 1.4 K, 4.2 K,
and 34 K are shown in Fig. 3, using probe set P2-P6.
We note that at 34 K only the i = 2 minimum is still
discernable. By analyzing a number of sweeps such as
these, combined with data taken at constant field and
current by using the precision measurement system
POTSYS [26], we determined the temperature depend-
ence of Rx at the five most significant Rx minima (i = 2,
3, 4, 6, 8), as shown in Fig. 4.

We note here that we were able to measure Rx over
more than seven orders of magnitude. There are essen-
tially two temperature ranges of interest. Above about
4 K the dominant conduction mechanism is thermal
activation. Here temperatures are high enough that an
electron can be thermally excited across the cyclotron
energy gap into the mobility edge,

(1)

Thermal activation is best viewed on an Arrhenius
plot, which shows ln Rx as a function of inverse temper-
ature. Figure 4 shows such an Arrhenius plot of the
Rx(T) data for filling factors i = 2, 4, 6, 8 and 3. The
deviation from activation above 12 K is likely due to
the rapidly changing electron number density above
this temperature. It is possible that the high temperature
can excite electrons into the second subband of the
2DEG, breaking the two-dimensional nature of the
system. Because of this, the fits to thermal activation
were restricted to temperatures below 12 K.

At lower temperatures (below about 4 K) the contri-
bution to the conductivity from thermal activation
decreases sharply, and other conduction processes take
over. It is commonly believed that variable range
hopping (VRH) describes transport in this regime. In
VRH theory [28] finite overlap of the wavefunctions of
the localized states allows electrons to tunnel between
these states. In the presence of an electric field, this
tunneling is sufficient to generate a current. One com-
monly accepted result, due to Efros and Shklovskii [23,
24], is

(2)
where T0 is related to the localization length ξ by

(3)

where ν is the filling factor, which becomes i at integer
values. C ≅ 6.2 in two dimensions, and the relative
permittivity εr ≅ 13 for GaAs.
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Fig. 2. The Hall (RH) and longitudinal resistances (Rx) of GaAs(7)
as a function of magnetic field. The insets of (a), (b), and (c) are
magnified in (b), (c), and (d), respectively. Representative quantum
numbers are labeled. Note that we can resolve Rx minima to at least
i = 90.
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Figure 5 shows the same Rx(T) data as in Fig. 4, but
recast as a log-log plot. Notice that the low temperature
points (with the exception of i = 2) fall very naturally
on a straight line, hinting at a power law dependence on
temperature. On a log-log scale, any of the variable
range hopping theories would predict some bending of
the data to the right of the straight line at low tempera-
tures. There is no evidence for this at all. In fact, for the
i = 2 minimum the data bends to the left.

Also shown in Fig. 5 are least squares fits to Rx(T).
The dotted lines are fits to thermal activation {Rx =
Rx0exp[(–(T0/T)]}. The solid lines are fits to power laws
(Rx = aT γ ), The dashed lines are fits to the empirical fit
Rx = Rx2exp(T/T2)α for low temperature values of the
i = 2 plot. The parameters from the fits are shown in
Table 1. Note the dramatic temperature dependence in
the power law (solid line) region of i = 2 and i = 4 

which vary as T 10.9 and T 6.1, respectively. This would
make an exceptionally sensitive thermometer over the
temperature range 4 K to 8 K for i = 2, and 2 K to 7 K
for i = 4. The temperature dependences are much less
dramatic in the power law region: T 3.6 and T 6.1, respec-
tively
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Fig. 3. The longitudinal resistance Rx in units of h/e2 at 1.4 K (solid line), 4.2 K (dotted line), and 34 K (dashed line).

Table 1. Parameters of the least squares fits to Rx (T) shown in
Fig. 5. ∆Ε and Εc are defined in Sec. 5

Thermal activation Power law Empirical model
Rx0(h/e2) T0(K) ∆E/Ec a(h/e2Kγ ) γ Rx2(h/e2) T2(K) α

i = 2 4.68 76.5 0.66 4 × 10–14 10.9 1.3 × 10–9 1.33 1.50
i = 4 0.38 30.0 0.53 5 × 10–8 6.1
i = 6 0.11 14.2 0.38 2 × 10–5 3.6
i = 8 0.06 8.2 0.29 3 × 10–4 2.5



4. Relationship Between RH and Rx

In this section we discuss the relationship between Rx

and ∆RH, which is the deviation of RH from h/ie2. This is
perhaps one of the most important results from a metro-
logical perspective, since frequently one uses Rx as a
guideline for identifying proximity to h/ie2 in the Hall
resistance.

To motivate this discussion, let us first examine the
temperature dependence of RH at the Rx minima. Figure 6
shows a plot of ∆RH for probe set P3-P4 as a function

of temperature on a log-log scale. While no activation or
variable range hopping fits are shown, it is clear from the
figure that the temperature dependence of RH bears at
least a qualitative resemblance to that of Rx in Fig. 4. It
appears to follow a power law at low temperatures, and
possibly activation at higher temperatures.

RH is a more difficult quantity to measure than Rx,
hence the larger error bars in the figure. The highest
precision and accuracy for the RH measurements was
about 10–8 h/e2 when using the potentiometric measure-
ment system POTSYS.
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Fig. 4. Arrhenius plot of the temperature dependence of Rx for i = 2 (circles), i = 4 (squares), i = 6 (upward trian-
gles), i = 8 (downward triangles), and i = 3 (diamonds).



Figure 7 shows a log-log plot of – ∆RH for probe sets
P1–P2, P3–P4, and P5–P6 against the Rx P2–P6 probe
set. The digital voltmeter portion of the data was
obtained by measuring  – ∆RH and Rx simultaneously at
different temperatures. For the POTSYS portion of the
data – ∆RH and Rx were measured sequentially for each
temperature. The most striking feature is that all three
Hall probe sets appear to follow a power law over the
entire temperature range, including that above 10 K.
The straight lines are weighted least squares fits to a
power law, – ∆RH = sRx

δ. The parameters of the fit are
given in Table 2.

For i = 6 and i = 8 the data were obtained directly
from the DVMs, which explains why the resolution is
much lower than for the i = 2 and i = 4 plots, which
incorporate data obtained using POTSYS.

All the plots show strong evidence for power law
dependence over the entire temperature range, and

with the exception of i = 4, there is very little probe
set dependence. The exponent of the power laws
increase with increasing filling factor, averaging 1.25
for i = 2, 1.44 for i = 4, 1.75 for i = 6, and 1.97 for
i = 8.

However, i = 4 stands out, since it shows a much
more distinctive probe set dependence than any other
filling factor. Curiously, this probe set dependence is
evident only at low temperatures; specifically,
between 1.4 K and 4 K, which is where we observed a
power law dependence on temperature for Rx, as
shown in Fig. 5. At higher temperatures than this all
three probe sets converge to the fit to the P3–P4 probe
set.

Note that, as can be seen from Fig. 7(a), the relation-
ship – ∆RH = 0.82Rx

1.25 for i = 2 holds over at least
seven orders of magnitude in – ∆RH
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Fig. 5. Temperature dependence of Rx for i = 2 (solid circles), i = 4 (open circles), i = 6 (solid squares), and i = 8
(open squares). Note the power law dependence at low temperature for i = 4, 6, and 8. The solid lines are power
law fits. The dotted lines are fits to thermal activation. The dashed line is a fit to exponential-like behavior, as
described in the text.



Since we know the temperature dependence of Rx,
and now we know the relationship between Rx and
∆RH, we can determine the temperature dependence of
∆RH. When thermal activation is observed in both Rx(T)
and ∆RH(T),

(4)

(5)

Eliminating T from Eqs. (4) and (5), we obtain the
following relationship between Rx(T) and ∆RH(T),

(6)

if ∆Ex and ∆EH are different energy gaps for Rx and
∆RH, respectively. From Eq. (6) we can see that

–∆RH,  follows a power law dependence on Rx, where
the exponent is determined by the ratio of the energy
gaps. This analysis can be repeated for temperature
dependences of the variable range hopping (VRH)
type, exp[–(T0/T )]a, and the same result is obtained,
with (∆EH/∆Ex) modified to (T0H/T0x)a.

There are two caveats to this result. First, we have
neglected any temperature-dependent prefactors in the
variable range hopping. Prefactors are notoriously
difficult to determine experimentally; the reason being
that the effect of the prefactor only becomes significant
at higher temperatures, whereas in practice VRH
is washed out at high temperatures by thermal
activation. Second, the exponent a in the VRH T
dependence was assumed to be the same for Rx

and ∆RH.
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Fig. 6. Arrhenius plot of the temperature dependence of the deviation of the Hall resistance from h/ie2 for
i = 2 (circles), i = 4 (squares), i = 6 (upward triangles), and i = 8 (downward triangles). The uncertainty in the
measurements, as indicated by the error bars, was significantly reduced for i = 2 and i = 4 by using a precision
measurement system.
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Fig. 7a,b. Parametric plot of –∆RH vs Rx as the temperature is varied for (a) i = 2, (b) i = 4. Three
different probe sets (Fig. 1) were used to measure RH: P1-P2 (solid circles), P3-P4 (open squares), and
P5-P6 (open diamonds). Note that the power law dependence holds over many orders of magnitude in
∆RH and Rx, e.g., seven orders of magnitude for i = 2.
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Fig. 7c,d. Parametric plot of –∆RH vs Rx as the temperature is varied for (c) i = 6, (d) i = 8. Three
different probe sets (Fig. 1) were used to measure RH: P1-P2 (solid circles), P3-P4 (open squares), and
P5-P6 (open diamonds). Note that the power law dependence holds over many orders of magnitude in
∆RH and Rx, e.g., seven orders of magnitude for i = 2.



Experimentally, quite often a linear relationship has
been observed between Rx and ∆RH [10-13,16-18],
implying that Rx and ∆RH experience the same ∆E or T0.
Isolated cases have shown deviations from this linear
form [13, 17], although it was not stated in those cases
whether the data fit a power law dependence. Mandal
and Ravishankar [29] have applied the self-consistent
Born approximation to calculate the effect of tempera-
ture and impurities on the Hall and longitudinal con-
ductivities. They found that for a certain range of
temperatures and level broadening Rx was proportional
to –∆RH, as seen in the experiments.

5. Energy Gap and Effective g-Factor

We might expect the energy gaps to be comparable to
the cyclotron energy, where the
effective mass m* is 6.8 % of the free electron mass me

in GaAs. Instead, we see from Table 1 that the energy
gaps range from about 2/3 (i = 2) to 1/3 (i = 8) of the
cyclotron energy. One possible explanation involves
the spin splitting. Since the Landau levels are split by
the Zeeman energy, the energy gap between the filled
higher energy spin-split level (even filling factors) and
the next low energy spin-split Landau level would be
reduced from the pure cyclotron energy. This argument
would work well for i = 2. However, it is unclear how

to extend this argument to the higher filling factors,
since the spin-splitting is considerably smaller there,
yet the energy gap is also, proportionally, smaller than
for i = 2.

This problem has been discussed in the literature.
Several solutions have been proposed, including the
effect of a finite thickness of the electron layer [30],
and disorder broadening of the Landau levels due to
impurities in the bulk [31, 32]. We apply an elementary
discussion of the latter effect to the results found for
GaAs(7).

The effect of charged impurities in the bulk is to
broaden the Landau levels, giving them a finite band-
width. This finite width would reduce the effective
energy gap between neighboring levels. In the simplest
case, we can assume the effect of this Landau level
broadening is to reduce the energy gap by a constant
amount, Γ. If we consider the energy gap otherwise to
be composed of the cyclotron energy and the Zeeman
energy, the expression for the energy gap, ∆E, becomes

(7)

where g is the effective g-factor. Equation (7) can be
rearranged to show the linearity in B,

(8)

Thus, by applying a linear fit to the energy gap as
a function of magnetic field, we can deduce the offset
Γ, as well as the g-factor.

Such a fit is shown in Fig. 8. For Rx the offset
obtained is given by Γ/2k = 14.5 K. If this offset is then
added to the measured energy gaps, corrected energy
gaps for all filling factors are about which
in turn implies a g-factor of about 6.5 in Eq. (7). For 
–∆RH, the offset obtained is given by Γ/2k = 8.76 K. If
this offset is then added to the measured energy gaps,
all corrected gaps are about which in turn
implies a g-factor of about 3.0, about half of the value
found for Rx.

From Eq. (8) we can also deduce the magnetic field
below which there is no energy gap. For Rx this corre-
sponds to

(9)

which is equivalent to a filling factor i ≈ 12. As
described in Ref. [27], the longitudinal conductivity
σxx(B,T) in GaAs(7) is described well by a perturbative 
treatment for low-magnetic field [see Ref. (34)].
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Table 2. Parameters of least squares fits to –∆RH(T) = sRx(T)δ, as
shown in Fig. 7. All four even integer filling factors are shown, with
three different RH probe sets and the average over all three probe sets
for each filling factor. There is an uncertainty of one unit in the last
digit associated with the values in this table

RH Probe Set s δ

i = 2 P1-P2 0.81 1.24
i = 2 P3-P4 0.87 1.26
i = 2 P5-P6 0.71 1.24
i = 2 average 0.82 1.25

i = 4 P1-P2 0.07 1.09
i = 4 P3-P4 1.12 1.48
i = 4 P5-P6 5.64 1.73
i = 4 average 0.93 1.44

i = 6 P1-P2 1.9 1.66
i = 6 P3-P4 3.4 1.80
i = 6 P5-P6 3.4 1.82
i = 6 average 2.6 1.75

i = 8 P1-P2 3.8 1.85
i = 8 P3-P4 2.4 1.78
i = 8 P5-P6 7.5 2.07
i = 8 average 5.5 1.97

c c / * ,E eB mω= =

c BE g Bω µ Γ∆ = − −

e

*1 .
* 2
e g mE B

m m
Γ
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/ 2 14.46 1.85 T

7.83
kB
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The Schubnikov-deHaas oscillations obey the follow-
ing relation, for B = 2 T:

(10)

Here EF is the Fermi energy, and F(0) and F(1) are
slowly-varying functions, unspecified by the theory.
The longitudinal conductivity σxx is related to the resis-
tivities by σxx = ρxx /(ρxx

2 + ρxx
2).

The Ando low-B theory [33] is expected to hold
when The fact that the theory works only
below about 2 K is consistent with Eq. (9), which pre-
dicts a small energy gap over the same range in B. A
similar calculation for ∆RH yields a minimum field of
0.97 T, or a filling factor of about 24.

Why ∆RH and Rx energy gaps, offsets, and g-factors
differ is not altogether clear. The difference in the off-
set, Γ, may be due to inhomogeneities in the device.
Since RH and Rx are measured over different regions of
the device, a non-uniform concentration of impurities
in the bulk could lead to different broadening of the
Landau levels.

The value of Γ in the Sasaki-Ezawa model [32] is
related to the average distance of the impurities in the
bulk from the 2DEG. In the Rx case, Γ = 2k × 14.5 K =
2.5 meV, which implies the impurities are about 45 nm

from the 2D layer. In the RH case Γ = 1.5 meV, which
implies the impurities are about 70 nm from the 2D
electron layer. These distances are both consistent with
the device growth parameters (see Ref. [27]). If, for
some reason, the average distance of the impurities
from the 2DEG was larger on the side of the device
close to the Hall voltage than on the side of the device
close to ground, then the average distance of the impu-
rities from the 2DEG would be greater for Hall meas-
urements than for Rx measurements (which are always
made close to ground). One way to investigate this
would be to make temperature dependence measure-
ments of Rx on the off-ground side of the device. If the
resultant Γ is closer to 1.5 meV than 2.5 meV, this
would support the above conjecture.

The reason why the effective g-factor is different for
RH and Rx is less clear. Although, given that the calcu-
lation of the g-factor enhancement by Ando and
Uemura [30] made use of impurity broadening of the
Landau levels, and the g-factor enhancement is
observed experimentally to be sample dependent, it
seems quite possible that the inhomogeneities could
also be responsible for the variation in the g-factor.

Finally, we show that the Sazaki-Ezawa model yields
the δ(i) values in Table 2, using the fitted values of g and
Γ. To see this, we recall from Eq. (6) that δ = ∆EH/∆Ex,
and replacing ∆EH and ∆Ex using Eq. (7), we arrive at the
following expression for δ :

(11)

Here, ω1 = eB1/m* is the cyclotron frequency at i = 1, and
in our experiments B1 = 23.0 T, hence
Using the numerical values for g and Γ, the numerical
value of δ is given by:

(12)

Substituting i = 2, 4, 6, and 8, we find δ = 1.26, 1.43,
1.70, and 2.22, respectively. This is consistent with the
values found experimentally (see Table 2): δ = 1.25,
1.44, 1.75, and 1.97. The largest discrepancy is for i = 8,
which is not surprising, since from Eq. (7) we can see
that for large i (or small B) the level broadening Γ is com-
parable to the level spacing, and the model is no longer
valid. For small i, we can Taylor expand the denominator
of Eq. (11), yielding the approximate expression:

(13)

where ∆g = gx – gH, and ∆Γ = Γx – ΓH.
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Fig. 8. Activation energy gap in temperature units as a function of
magnetic field for - RH (open circles) and Rx (closed circles). The
solid lines are linear least squares fits.
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6. Conclusion

By examining the temperature dependence of Rx we
found two distinct regimes. Between 4.2 K and 10 K
we observed the expected activated behavior, due to an
energy gap. By using a simple model of impurity
broadening of the energy levels, we found the gap to be
about The difference is due to the enhanced
spin-splitting, for which we obtained an effective
g-factor of 6.5. This is comparable to values quoted in
the literature [34-38].

In addition, by examining ∆RH(T) ≡ RH(T) – RH(0) as
a function of Rx(T), we were able to determine that
∆RH(T) is also activated, with an energy gap of about

implying an effective g-factor of 3.0.
At lower temperatures (1.4 K to 4 K) Rx for all four

filling factors clearly exhibited a power-law depend-
ence on temperature, with powers ranging from 2.5 for
i = 8 to 10.9 for i = 2. However, i = 2 showed a power
law dependence over a higher temperature range than
the other filling factors (4 K to 7 K). At lower temper-
atures the Rx(T) curve flattened out for i = 2. In no case
were we able to fit temperature dependences predicted
by the theory of variable range hopping, which is typi-
cally observed in these kind of transport experiments
(although it is almost always measured away from the
Rx minima to gain enough sensitivity).

Finally, we note a result obtained that may have the
most practical impact for resistance metrology, which
is the power law relationship between ∆RH(T) and
Rx(T). We found a power law to hold for all three RH

probe sets, and all four filling factors, over the entire
temperature range measured. While we would expect
power law behavior, or even a linear relationship, if
∆RH(T) showed similar temperature dependence as
Rx(T), it is not clear why Rx and ∆RH follow the same
power law over the entire temperature range. However,
in practice this can be very useful, as it gives an empir-
ical tool for establishing the limiting value of RH as
Rx → 0. We found the powers, which range from about
1.25 for i = 2 to about 2.00 for i = 8, could be explained
satisfactorily by applying the Sazaki-Ezawa model of
bulk impurities and spin-splitting.
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